Tensor Subspace Analysis
نویسندگان
چکیده
Previous work has demonstrated that the image variations of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces. The typical linear subspace learning algorithms include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projection (LPP). All of these methods consider an n1 × n2 image as a high dimensional vector in R12 , while an image represented in the plane is intrinsically a matrix. In this paper, we propose a new algorithm called Tensor Subspace Analysis (TSA). TSA considers an image as the second order tensor in R1 ⊗ R2 , where R1 and R2 are two vector spaces. The relationship between the column vectors of the image matrix and that between the row vectors can be naturally characterized by TSA. TSA detects the intrinsic local geometrical structure of the tensor space by learning a lower dimensional tensor subspace. We compare our proposed approach with PCA, LDA and LPP methods on two standard databases. Experimental results demonstrate that TSA achieves better recognition rate, while being much more efficient.
منابع مشابه
Human Action Recognition Using Tensor Principal Component Analysis
Human action can be naturally represented as multidimensional arrays known as tensors. In this paper, a simple and efficient algorithm based on tensor subspace learning is proposed for human action recognition. An action is represented as a 3th-order tensor first, then tensor principal component analysis is used to reduce dimensionality and extract the most useful features for action recognitio...
متن کاملMulti-view face recognition based on tensor subspace analysis and view manifold modeling
This paper aims to address the face recognition problem with a wide variety of views. We proposed a tensor subspace analysis and view manifold modeling based multi-view face recognition algorithm by improving the TensorFace based one. Tensor subspace analysis is applied to separate the identity and view information of multi-view face images. To model the nonlinearity in view subspace, a novel v...
متن کاملPrincipal Component Analysis with Tensor Train Subspace
Tensor train is a hierarchical tensor network structure that helps alleviate the curse of dimensionality by parameterizing large-scale multidimensional data via a set of network of low-rank tensors. Associated with such a construction is a notion of Tensor Train subspace and in this paper we propose a TTPCA algorithm for estimating this structured subspace from the given data. By maintaining lo...
متن کاملTensor network subspace identification of polynomial state space models
This article introduces a tensor network subspace algorithm for the identification of specific polynomial state space models. The polynomial nonlinearity in the state space model is completely written in terms of a tensor network, thus avoiding the curse of dimensionality. We also prove how the block Hankel data matrices in the subspace method can be exactly represented by low rank tensor netwo...
متن کاملA Convengent Solution to Tensor Subspace Learning
Recently, substantial efforts have been devoted to the subspace learning techniques based on tensor representation, such as 2DLDA [Ye et al., 2004], DATER [Yan et al., 2005] and Tensor Subspace Analysis (TSA) [He et al., 2005]. In this context, a vital yet unsolved problem is that the computational convergency of these iterative algorithms is not guaranteed. In this work, we present a novel sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005